Cheeger Isoperimetric Constants of Gromov-hyperbolic Spaces with Quasi-poles
نویسندگان
چکیده
Let X be a non-compact complete manifold (or a graph) which admits a quasi-pole and has bounded local geometry. Suppose that X is Gromov-hyperbolic and the diameters (for a fixed Gromov metric) of the connected components of X(∞) have a positive lower bound. Under these assumptions we show that X has positive Cheeger isoperimetric constant. Examples are also constructed to show that the Cheeger constant h(X) may be zero if any of the above assumption on X is removed. Applications of this isoperimetric estimate include the solvability of the Dirichlet problem at infinity for non-compact Gromov-hyperbolic manifolds X above. In addition, we show that the Martin boundary ∂∆X of such a space X is homeomorphic to the geometric boundary X(∞) of X at infinity.
منابع مشابه
Gromov Hyperbolic Spaces and Optimal Constants for Isoperimetric and Filling Radius Inequalities
A. In this article we exhibit the optimal (i.e. largest) constants for the quadratic isoperimetric and the linear filling radius inequality which ensure that a geodesic metric space X is Gromov hyperbolic. Our results show that the Euclidean plane is a borderline case for the isoperimetric inequality. Furthermore, by only requiring the existence of isoperimetric fillings in L∞(X) satisfy...
متن کاملCharacterizations of Metric Trees and Gromov Hyperbolic Spaces
A. In this note we give new characterizations of metric trees and Gromov hyperbolic spaces and generalize recent results of Chatterji and Niblo. Our results have a purely metric character, however, their proofs involve two classical tools from analysis: Stokes’ formula in R2 and a Rademacher type differentiation theorem for Lipschitz maps. This analytic approach can be used to give chara...
متن کاملGromov Hyperbolic Spaces and the Sharp Isoperimetric Constant
In this article we exhibit the largest constant in a quadratic isoperimetric inequality which ensures that a geodesic metric space is Gromov hyperbolic. As a particular consequence we obtain that Euclidean space is a borderline case for Gromov hyperbolicity in terms of the isoperimetric function. We prove similar results for the linear filling radius inequality. Our theorems strengthen and gene...
متن کاملCheeger Constants of Surfaces and Isoperimetric Inequalities
We show that the if the isoperimetric profile of a bounded genus non-compact surfaces grows faster than √ t, then it grows at least as fast as a linear function. This generalizes a result of Gromov for simply connected surfaces. We study the isoperimetric problem in dimension 3. We show that if the filling volume function in dimension 2 is Euclidean, while in dimension 3 is sub-Euclidean and th...
متن کاملOn the Asymptotic Isoperimetric Constants for Riemann Surfaces and Graphs
We study the behavior of the Cheeger isoperimetric constant on infinite families of graphs and Riemann surfaces, and its relationship to the first eigenvalue λ1 of the Laplacian. We adapt probabilistic arguments of Bollobás to the setting of Riemann surfaces, and then show that Cheeger constants of the modular surfaces are uniformly bounded from above away from the maximum value. We extend this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999